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Abstract We simulate several models of random curves in the half plane and numerically
compute the stochastic driving processes that produce the curves through the Loewner equa-
tion. Our models include models whose scaling limit is the Schramm-Loewner evolution
(SLE) and models for which it is not. We study several tests of whether the driving process
is Brownian motion, as it is for SLE. We find that testing only the normality of the process
at a fixed time is not effective at determining if the random curves are an SLE. Tests that in-
volve the independence of the increments of Brownian motion are much more effective. We
also study the zipper algorithm for numerically computing the driving function of a simple
curve. We give an implementation of this algorithm which runs in a time O(N1.35) rather
than the usual O(N2), where N is the number of points on the curve.

Keywords Loewner equation · SLE · Random curves · Zipper algorithm

1 Introduction

The Loewner equation provides a means for encoding curves in the upper half plane that
do not intersect themselves by a real-valued function. Let γ (t) be such a simple curve with
0 ≤ t < ∞. Let H denote the upper half of the complex plane, and let γ [0, t] denote the
image of γ up to time t . Then H \ γ [0, t] is a simply connected domain. So there is a
conformal map gt from this domain to H. If the curve is suitably parametrized and gt is
suitably normalized, then gt satisfies the differential equation

∂gt (z)

∂t
= 2

gt (z) − Ut

, g0(z) = z (1)

for some real valued function Ut on [0,∞). The function Ut is often called the driving
function.
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If our simple curve in the half plane is random, then the driving function Ut is a stochastic
process. Schramm discovered that if the scaling limit of a two-dimensional model is confor-
mally invariant and satisfies a certain Markov property, then this stochastic driving process
must be a Brownian motion with mean zero [14]. The only thing that is not determined is
the variance. Schramm named this process stochastic Loewner evolution or SLE; it is now
often referred to as Schramm-Loewner evolution.

Many critical two-dimensional models from statistical mechanics and probability satisfy
these properties or are believed to satisfy them, and so should be SLE for some κ (the pa-
rameter that determines the variance). These include the loop-erased random walk [11, 19],
the self-avoiding walk [10], interfaces in the critical Ising model [16], the Gaussian free
field [17], critical percolation [5, 15], and uniform spanning trees [11]. More recent work
has considered whether other models have random curves that are described by SLE. The
possibility that domain walls in spin glass ground states are SLE curves was studied numeri-
cally both by Amoruso, Hartman, Hastings, and Moore [1] and by Bernard, Le Doussal, and
Middleton [4]. Bernard, Boffetta, Celani and Falkovich considered simulations of certain
isolines in two-dimensional turbulence [2] and surface quasi-geostrophic turbulence [3].

In this paper we consider models which are definitely not SLE. They are based on
well known lattice models—the loop-erased random walk (LERW), the self-avoiding walk
(SAW) and the critical percolation exploration process. We distort these models by shrink-
ing the random curves slightly in the vertical direction but not in the horizontal direction.
In other words we apply a non-conformal transformation to the curves. Without distortion
these models are all proven or conjectured to have a scaling limit given by SLE.

One way to test if a model of random curves is SLE is to compute its stochastic driving
process and see if it is Brownian motion. In this paper we simulate these distorted models,
numerically compute their stochastic driving process, and then test if they are Brownian
motions. We also do this for the models without distortion. Our goal is to see how well one
can determine whether or not a model is SLE by studying this stochastic driving process
and to compare various methods for testing if the stochastic driving process is a Brownian
motion.

Another goal of this paper is to study the algorithm for computing the driving function of
a given curve. The standard implementation of the “zipper algorithm” for doing this requires
a time O(N2) where N is the number of points on the curve. We present an implementation
that runs in a time O(Np) with p approximately 1.35. This implementation uses the same
idea used in [6] to simulate SLE curves quickly. We also study the difference in the driving
function found using “tilted slits” versus “vertical slits” and the effect of the number of
points used on the curve to compute the driving function.

2 Distorted Models

We study the stochastic driving function of three models. We refer to them as distorted
models. For λ > 0 we define a non-conformal map on the upper half plane by φ(x, y) =
(x,λy). Given a model that produces random curves γ in the upper half plane, we consider
the random curves φ ◦ γ . In other words, we stretch the curve by a factor of λ in the vertical
direction, but do not stretch it in the horizontal direction.

We apply this distortion to the loop-erased random walk, the self-avoiding walk and
percolation interfaces. For all three models we consider the chordal version of the model in
which the random curve lies in the upper half plane and goes from the origin to ∞. For the
LERW this means we take a half plane excursion and loop erase it. For the SAW this means
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we use the uniform probability measure on nearest neighbor walks with a fixed number of
steps which begin at the origin and lie in the upper half plane. For percolation we consider
site percolation on the triangular lattice in the upper half plane with boundary conditions
which force an interface to start at the origin. Details of the definitions of these models and
the parameters used in the simulations may be found in the Appendix.

There is no simple relation between the driving function for the curve γ and the driving
function for the distorted curve φ ◦ γ . We study the driving function for the distorted model
as follows. We generate samples of the LERW, SAW or percolation interface and then apply
the distortion map φ. Then we compute the driving function of the distorted curve. The
result is a collection of samples of the stochastic driving process of the distorted model. We
then do various statistical tests to see if this process is a Brownian motion.

We denote the driving process by Ut . All the models are invariant under reflections about
the vertical axis. Hence E[Ut ] = 0. We begin by plotting the variance E[U 2

t ] as a function
of t . We should emphasize that in the scaling limit, all the models have a scaling property
which implies that E[U 2

t ] is a linear function of t , even if the scaling limit is not an SLE. So
this does not test whether Ut is a Brownian motion. It only provides an estimate of κ where
κ is the slope of the function t → E[U 2

t ].
The first statistical test is to see if the distribution of an individual Ut is normal. We use

the Kolmogorov-Smirnov test. This test is based on the fact that for a continuous random
variable Y , if F is the cumulative distribution of Y , then F(Y ) is uniformly distributed on
[0,1]. Let Y1, Y2, . . . , YN be N observations of the random variable Y , and let Y(1) < Y(2) <

· · · < Y(N) be these numbers arranged in increasing order. Then the statistic is

D = max
1≤k≤N

∣
∣
∣
∣
F(Y(k)) − k + 1

2

N

∣
∣
∣
∣
+ 1

2N
(2)

(This formula may appear different from that found in most statistics texts, but it is in fact
the same.) Under the null hypothesis that Y has the distribution F , the limiting distribution
of

√
ND as N → ∞ is known. For example, P (

√
ND > 1.36) is approximately 5%. So if

we compute this statistic for an individual Ut with F equal to the cumulative distribution
for a normal random variable with mean zero and variance κt , and find that the value of√

ND is large (say larger than 1.36), then we conclude that the distribution of Ut is not this
normal distribution. We perform this Kolmogorov-Smirnov test for two values of the time,
T and T/2. The value of T as well as other parameters used in the simulations are given in
the Appendix. The results are shown in the various tables in the columns labeled D(T/2)

and D(T ).
Our next test involves the independence of increments of Brownian motion. Let

X1 = UT/2, X2 = UT − UT/2 (3)

If Ut is a Brownian motion, then X1 and X2 are independent and have mean zero. So their
product X1X2 has mean zero. We test the hypothesis that its mean is zero. If Ut is a Brownian
motion, then the variance of X1X2 can be found. Denote it by σ 2. The statistic we use, Z,
is simply the sample mean for X1X2 divided by σ/

√
N . If N is large and Ut is a Brownian

motion, then the distribution of Z is close to that of the standard normal. This test is shown
in the tables in the column labeled Z.

For our last three tests we let 0 < t1 < t2 < · · · < tn = T . We use equally spaced ti in
our tests, but one could consider non-uniform choices. If Ut is a Brownian motion, then the
increments

Xj = Utj − Utj−1 (4)
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Table 1 The estimate of κ using
a weighted least squares fit for
E[U2

t ] as a function of t . The
error bars are two standard
deviations

Model λ κ

LERW 0.90 2.3315 ± 0.0106

LERW 0.95 2.1709 ± 0.0094

LERW 1.00 2.0008 ± 0.0093

SAW 0.90 3.0744 ± 0.0138

SAW 0.95 2.8414 ± 0.0108

SAW 1.00 2.6686 ± 0.0132

Percolation 0.90 6.9446 ± 0.0287

Percolation 0.95 6.4422 ± 0.0311

Percolation 1.00 6.0404 ± 0.0265

are independent and each is normal with mean zero and variance κ(tj − tj−1). We test this
joint distribution with a χ2 goodness-of-fit test. The idea is to divide the possible values
of (X1,X2, . . . ,Xn) into m cells and count the number of samples that fall into each cell.
Under the hypothesis that the Xj are independent and normally distributed, we can compute
the expected number of samples that fall into each cell. Let Oj be the number of samples
in cell j , and Ej the expected value of this random variable under the hypothesis that Ut is
Brownian motion. The test is then based on the statistic:

χ2 =
m

∑

j=1

(Oj − Ej)
2

Ej

(5)

Under the hypothesis that Ut is a Brownian motion, if m is large the distribution of this
statistic is approximately the χ2 distribution with m − 1 degrees of freedom.

We consider three choices of the cells. In the first choice we let n = 10, and use only the
signs of the Xj to define the cells. Thus there are 210 = 1024 cells. We denote the statistic
in this case by χ2

a . The second choice of cells is similar—we use only the signs of the
increments but with n = 5. So there are 25 = 32 cells. This statistic is denoted by χ2

b . The
third choice uses just two increments. For each of the increments X1 and X2 we look at
which quartile it falls in. We let q be the constant such that under the hypothesis that Ut

is Brownian motion, P (Xi > q) = 1/4, and then divide the possible values of each Xi into
the intervals (−∞,−q], [−q,0], [0, q], [q,∞). Thus there are 16 cells. This final statistic
is denoted by χ2

c . Note that the statistics χ2
a and χ2

b have the advantage that they do not
involve the value of κ . For χ2

c we need a value for κ to compute q .
We study three values of the distortion parameter, λ = 0.9,0.95 and 1, for each of the

three lattice models. Thus there are a total of nine models considered. (We have run the same
simulations for λ = 1.05 and 1.1, but do not present these results. They are consistent with
the results that we do present.) We generate 105 samples for each of the nine cases, compute
the driving function Ut for each sample, and record the value of Ut at ten equally spaced
times, t = T/10,2T/10, . . . , T . We compute the variance of Ut at each of the ten times and
then do a least squares fit to estimate κ , the slope of t → E[U 2

t ]. The results are shown in
Table 1.

For the three models we present the results of our statistical tests in Tables 2–4. We
perform the statistical tests for the first N samples of the 100K samples, using N =
5K,10K,20K,50K and 100K . In the tables we do not give the value of the statistic, but
rather the corresponding “p-value.” The p-value is defined as follows. Consider a one-sided
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Table 2 The distorted LERW. λ is the amount of distortion, with λ = 1 being no distortion. N is the number
of samples used. The other six columns give the p-value of six different statistics used to test if the driving
process is Brownian motion. See the text for details

λ N D(T/2) D(T ) Z χ2
a χ2

b
χ2

c

0.90 5,000 0.018695 0.223875 0.012146 0.306555 0.654153 0.139523

10,000 0.605601 0.562645 0.012238 0.000614 0.000666 0.352671

20,000 0.578409 0.860558 0.029349 0.000000 0.000041 0.820988

50,000 0.213470 0.308500 0.078267 0.000000 0.000000 0.000120

100,000 0.222762 0.253184 0.003394 0.000000 0.000000 0.000000

0.95 5,000 0.689088 0.567792 0.021239 0.913735 0.598610 0.766046

10,000 0.562020 0.898586 0.055965 0.423453 0.350098 0.593728

20,000 0.648585 0.638202 0.064346 0.793825 0.318862 0.865687

50,000 0.486077 0.178479 0.010384 0.078510 0.000173 0.850495

100,000 0.234619 0.004251 0.000812 0.000080 0.000000 0.501958

1.00 5,000 0.322835 0.909183 0.607075 0.599810 0.281570 0.332253

10,000 0.902220 0.499358 0.274931 0.118588 0.593618 0.820108

20,000 0.763553 0.856747 0.240621 0.167155 0.227972 0.322061

50,000 0.840997 0.746111 0.376101 0.695880 0.735182 0.702162

100,000 0.949877 0.934915 0.448990 0.305246 0.257668 0.509009

Table 3 The p-values of the distorted SAW

λ N D(T/2) D(T ) Z χ2
a χ2

b
χ2

c

0.90 5,000 0.076330 0.174654 0.538122 0.218454 0.170313 0.903646

10,000 0.471555 0.343790 0.824175 0.100552 0.019827 0.803437

20,000 0.246740 0.321011 0.905811 0.003206 0.000008 0.464170

50,000 0.165784 0.312940 0.013581 0.000000 0.000000 0.004110

100,000 0.251134 0.200176 0.000124 0.000000 0.000000 0.000000

0.95 5,000 0.408348 0.350261 0.933527 0.027830 0.037820 0.883070

10,000 0.136263 0.888704 0.681952 0.775130 0.704539 0.931479

20,000 0.805490 0.663008 0.983501 0.682962 0.797951 0.104660

50,000 0.483299 0.323554 0.882502 0.162307 0.030086 0.959757

100,000 0.313017 0.158268 0.794145 0.000018 0.009703 0.534966

1.00 5,000 0.456948 0.371554 0.636449 0.618423 0.126116 0.424437

10,000 0.557806 0.267715 0.821561 0.200096 0.145614 0.609878

20,000 0.933089 0.552806 0.514615 0.793825 0.253454 0.370379

50,000 0.956776 0.852597 0.588566 0.685205 0.275748 0.161052

100,000 0.501460 0.870474 0.219944 0.028353 0.079678 0.579479

statistic such as the Kolmogorov-Smirnov D statistic. Suppose that in our test the value of
the statistic is x. Then the p-value is the probability P (D > x) under the null hypothesis.
For a two-sided statistic such as Z the definition is modified in the obvious way. A small
p-value (less than a few percent) indicates that the value of the corresponding statistic is
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Table 4 The p-values of the distorted percolation interface

λ N D(T/2) D(T ) Z χ2
a χ2

b
χ2

c

0.90 5,000 0.268811 0.707407 0.035275 0.463308 0.440588 0.068530

10,000 0.568890 0.306491 0.043429 0.387697 0.125325 0.286280

20,000 0.113505 0.640373 0.192064 0.002475 0.000123 0.387076

50,000 0.073017 0.749263 0.000274 0.000000 0.000000 0.007620

100,000 0.000694 0.015332 0.000005 0.000000 0.000000 0.000000

0.95 5,000 0.667251 0.576948 0.881721 0.978563 0.820268 0.261246

10,000 0.831016 0.921401 0.964028 0.586700 0.601949 0.198512

20,000 0.827859 0.938272 0.703387 0.580099 0.123268 0.124509

50,000 0.504299 0.913135 0.465606 0.033206 0.000071 0.291786

100,000 0.084361 0.515339 0.259067 0.000000 0.000000 0.043819

1.00 5,000 0.075710 0.685162 0.242412 0.884633 0.296115 0.657406

10,000 0.882136 0.304884 0.618193 0.267297 0.246049 0.766046

20,000 0.271328 0.037469 0.133359 0.088622 0.587819 0.060798

50,000 0.100113 0.008876 0.184139 0.256426 0.996808 0.283681

100,000 0.333954 0.059206 0.518117 0.287868 0.779478 0.149034

very unlikely under the hypothesis that Ut is Brownian motion, and so we should reject the
hypothesis that Ut is Brownian motion.

Tables 2–4 contain a lot of numbers, but they clearly show the following. For λ = 1 the
p-values in the table for all three lattice models are not small, and so our tests do not indicate
that we should reject the hypothesis that Ut is a Brownian motion. This is as it should be.
When λ = 1 the models should have a scaling limit given by SLE, and so Ut should indeed
be Brownian motion.

For the models that are not SLE, λ = 0.9,0.95, we first consider the two Kolmogorov-
Smirnov tests that Ut is normal. The corresponding p-values are not typically small, and this
test is completely ineffective at indicating that Ut is not Brownian motion, even when we
use 105 samples. In Fig. 1 the data points are histograms for the density function of UT /

√
T

for the LERW, SAW and percolation with λ = 0.95. The curves are the density functions
for the normal distribution with variance κ where κ is determined from our least squares
fit. As the Kolmogorov-Smirnov test showed, the data points are fit very well by the normal
curves. (For λ �= 1, it is easy to show that the distorted model is not SLE, and so Ut is not
a Brownian motion. However, this does not rule out the possibility that the Ut are normal
even for the distorted models.)

The other four tests involve the independence of the increments. The test based on the
mean of the product of two independent increments sometimes indicates correctly that Ut is
not Brownian motion, but it is not very powerful. By contrast χ2

a and χ2
b are quite effective

at correctly indicating when Ut is not a Brownian motion. For λ = 0.9 these tests correctly
indicate Ut is not a Brownian motion with sample sizes on the order of ten to twenty thou-
sand. For λ = 0.95 these tests need on the order of a hundred thousand samples, but they
are the only tests to correctly indicate that Ut is not a Brownian motion for this amount of
distortion. The final statistic χ2

c is only sometimes effective.
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Fig. 1 The points are a histogram for the density of UT /
√

T for the LERW, SAW and percolation with
distortion λ = 0.95. The curves are the density of a normal distribution with variance κ where κ is determined
from the least squares fit

3 A Faster Zipper

We briefly describe the standard method for computing the driving function of a simple
curve γ . Let gs be the conformal map which takes the half plane minus γ [0, s] onto the half
plane, normalized so that for large z

gs(z) = z + 2t

z
+ O

(
1

z2

)

(6)

The coefficient 2t depends on s and is the half-plane capacity of γ [0, s]. The value of the
driving function at t is Ut = gs(γ (s)). Thus computing the driving function essentially re-
duces to computing this uniformizing conformal map. We will describe the “zipper algo-
rithm” for doing this [8, 13]. Another approach to computing the driving function may be
found in [18].

We find it more convenient to work with the conformal map

hs(z) = gs(z) − Us (7)

It maps H \ γ [0, s] onto H and sends the tip γ (s) to the origin. The value of the driving
function at s is minus the constant term in the Laurent expansion of hs about ∞. From now
on we work with this normalization for our conformal maps.

Let z0, z1, . . . , zn be points along the curve with z0 = 0. In our applications these are
lattice sites. The zipper algorithm finds a sequence of conformal maps hi , i = 1,2, . . . , n
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such that hk ◦ hk−1 ◦ · · · ◦ h1 approximates the conformal map for the curve up to site zk .
Suppose that the conformal maps h1, h2, . . . , hk have been defined so that hk ◦hk−1 ◦ · · · ◦h1

sends H \ γ to H where γ is some curve that passes through z0, z1, . . . , zk . In particular zk

is mapped to the origin. Let

wk+1 = hk ◦ hk−1 ◦ · · · ◦ h1(zk+1) (8)

Then wk+1 is close to the origin. We define hk+1 to be a conformal map with the appropriate
normalizations that sends H\γk+1 to H where γk+1 is a short simple curve that ends at wk+1.
The key idea is to choose this curve so that hk+1 is explicitly known. The two choices we
will use are “tilted slits” and “vertical slits.”

Let 2	ti be the capacity of the map hi , and 	Ui the final value of the driving function
for hi . So

hi(z) = z − 	Ui + 2	ti

z
+ O

(
1

z2

)

(9)

Then

hk ◦ hk−1 ◦ · · · ◦ h1(z) = z − Ut + 2t

z
+ O

(
1

z2

)

(10)

where

t =
k

∑

i=1

	ti, (11)

Ut =
k

∑

i=1

	Ui (12)

Thus the driving function of the curve is obtained by “adding up” the driving functions of
the elementary conformal maps hi .

We now consider the two particular types of maps we use for hk+1. For tilted slits, γk+1 is
the line segment from the origin to wk+1. There is no explicit formula for hk+1 in this case,
but there is a formula for its inverse:

h−1
k+1(z) = (z + xl)

1−α(z − xr)
α (13)

where xl, xr > 0. It maps the half plane onto the half plane minus a line segment which
starts at the origin and forms an angle α with the positive real axis. The interval [−xl, xr ]
gets mapped onto the slit. We must choose xl and xr so that hk+1 satisfies our normalization
conditions. In particular, h−1

k+1 must send the origin to the tip of the line segment, i.e., wk+1.
Tedious but straightforward calculation shows if we let wk+1 = r exp(iαπ), then

xl = r

(
1 − α

α

)α

, xr = r

(
α

1 − α

)1−α

(14)

The changes in the driving function are given by

	t = 1

4
r2α1−2α(1 − α)2α−1, 	U = r(1 − 2α)α−α(1 − α)−(1−α) (15)
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For vertical slits we take γk+1 to be the vertical line segment from the real axis to wk+1.
Note that since this γk+1 does not start at the origin, this method does not approximate the
original simple curve γ by another simple curve. Instead, the domain of the conformal map
that we construct to approximate hs is of the form H minus a set that is more complicated
than a simple curve. This may make the reader nervous, but we will see in the next section
that we get essentially the same driving functions using tilted slits or vertical slits. The
conformal map that removes this vertical line with our normalizations is

hk+1(z) = i
√

−(z − x)2 − y2 (16)

where wk+1 = x + iy and the branch cut for the square root is the negative real axis. The
changes in the driving function are given by

	t = 1

4
y2, 	U = x (17)

A comment on terminology is in order. We use “zipper algorithm” to refer to all the
various algorithms we can get from different choices of the curve γk+1. Marshall and Rohde
[13] use “zipper” to refer only to the choice using tilted slits.

The number of operations needed to compute a single wk+1 is proportional to k. So to
compute all the points wk+1 requires a time O(N2). To do better we must avoid evaluating
the k-fold composition in (8) every time we compute a wk+1. We begin by grouping the
functions in (8) into blocks. We denote the number of functions in a block by b. Let

Hj = hjb ◦ hjb−1 ◦ · · · ◦ h(j−1)b+2 ◦ h(j−1)b+1 (18)

If we write k as k = mb + r with 0 ≤ r < b, then (8) becomes

wk+1 = hmb+r ◦ hmb+r−1 ◦ · · · ◦ hmb+1 ◦ Hm ◦ Hm−1 ◦ · · · ◦ H1(zk+1) (19)

Typically, the number of compositions in (19) is smaller than the number in (8) by roughly
a factor of b. The hi are relatively simple, but the composition Hj cannot be explicitly
computed. Our strategy is to approximate the hi by functions whose compositions can be
explicitly computed to give an explicit approximation to Hj . This allows us to compute the
compositions in (18) just once rather than every time we compute a wk .

Recall that hi is normalized so that hi(∞) = ∞ and h′
i (∞) = 1. It maps H minus a

simple curve which starts at the origin to H. Let h denote such a conformal map. Let r be
the largest distance from the origin to a point on the curve. Then h is analytic on {z ∈ H :
|z| > r}. Note that h is real valued on the real axis. By the Schwartz reflection principle
it may be analytically continued to {z ∈ C : |z| > r}. Moreover, it does not vanish on this
domain. So if we let f (z) = h(1/z), then f is analytic in {z ∈ C : |z| < 1/r} and f (0) = 0,
f ′(0) = 1. The Laurent series of h about ∞ is just the power series of f about 0. For large
z, h(z) is well approximated by a finite number of terms in this Laurent series. It will prove
more convenient to work with a different series.

Define ĥ(z) = 1/h(1/z). Since h(z) does not vanish on {z ∈ C : |z| > r}, ĥ(z) is analytic
in {z ∈ C : |z| < 1/r}. Our assumptions on h imply that ĥ(0) = 0 and ĥ′(0) = 1. So ĥ has a
power series of the form

ĥ(z) =
∞

∑

j=1

aj z
j (20)
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Table 5 The time (in seconds)
needed to unzip a SAW with N

steps without using the power
series approximation is shown in
the second column (time 1). The
time using the power series
approximation is shown in the
third column (time 2). The fourth
column (factor) is the ratio of
these two times. The block length
used is in the last column

N Time 1 Time 2 Factor Block length

1,000 0.21 0.43 0.50 20

2,000 0.86 0.95 0.91 20

5,000 5.44 3.00 1.81 20

10,000 21.44 7.41 2.89 30

20,000 85.65 18.31 4.68 40

50,000 534.8 62.6 8.54 50

100,000 2128 158 13.45 75

200,000 8562 437 19.59 100

500,000 53516 1674 31.98 200

1,000,000 214451 4675 45.87 200

with a1 = 1. The radius of convergence of this power series is 1/r . Note that the coefficients
of this power series are the coefficients of the Laurent series of 1/h.

The primary advantage of working with the power series of ĥ is its behavior with respect
to composition. It is trivial to check that

(h1 ◦ h2)ˆ = ĥ1 ◦ ĥ2 (21)

Our approximation for hi(z) is to replace ĥi (z) by the truncation of its power series at
order n. So

hi(z) = 1

ĥi (1/z)
≈

[
n

∑

j=1

ajz
−j

]−1

(22)

For each hi we compute the power series of ĥi to order n. We use them and (21) to
compute the power series of Ĥj to order n. Let 1/Rj be the radius of convergence for the
power series of Ĥj . Now consider (19). If z is large compared to Rj , then Hj(z) is well
approximated using the power series of Ĥj . We introduce a parameter L > 1 and use this
series to compute Hj(z) whenever |z| ≥ LRj . When |z| < LRj , we just use (18) to compute
Hj(z). The argument of Hj is the result of applying the previous conformal maps to some
zk+1, and so is random. Thus whether or not we can approximate a particular Hj by its series
depends on the randomness and on which wk+1 we are computing.

We need to compute Rj . Consider the images of z(j−1)b, z(j−1)b+1, . . . , zjb−1 under the
map Hj−1 ◦ Hj−2 ◦ · · · ◦ H1. The domain of the conformal map Hj is the half-plane H

minus some curve �j which passes through the images of these points. The radius Rj is the
maximal distance from the origin to a point on �j . This distance should be very close to or
even equal to the maximum distance from the origin to images of z(j−1)b, z(j−1)b+1, . . . , zjb−1

under Hj−1 ◦ Hj−2 ◦ · · · ◦ H1. So we take Rj to be the maximum of these distances.
Our algorithm depends on three parameters. The integer b is the number of functions in

a block. The integer n is the order at which we truncate the power series of the Ĥj . The
real number L > 1 determines when we use the power series approximation for the block
function.

The improvement in the speed of the zipper algorithm from using our power series ap-
proximation is shown in Table 5 and Fig. 2. In these timing tests we use a single SAW with
one million steps. We time how long it takes to unzip the first N steps with and without the
power series approximation. We do the computations using the power series approximation
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Fig. 2 The points are the time (in seconds) needed to unzip a SAW with N steps with and without the power
series approximation. The lines have slopes 2 and 1.35

for different choices for the block length, namely b = 20,30,40,50,75,100,200,300, and
report the fastest time. The last column in the table indicates the block length that achieves
the fastest time. As a rule of thumb, a good choice for the block length (at least for the SAW)
is b = √

N/4. The next to last column in the table gives the factor by which the use of the
power series approximation reduces the time needed for the computation. These timing tests
were done on a PC with a 3.4 GHz Pentium 4 processor.

Without the power series approximation the time is O(N2). This is seen clearly in the
log-log plot in Fig. 2 where the data for unzipping without the power series approximation
is fit quite well by a line with slope 2. The data for unzipping using the power series approx-
imation is fit by a line with slope 1.35. This indicates that the time required when the power
series are used is approximately O(N1.35).

4 Comparisons of Computational Methods

Given a simple curve, there are several choices when we compute its Loewner driving func-
tion. For the explicit conformal map in the zipper algorithm we could use either the map that
removes a vertical slit from the half plane or the map that removes a tilted slit. We could use
the power series approximation to speed up the calculation as explained in the last section.
We have a choice of how many points we use along the curve. In this section we study the
effect of these various choices.

For our study we generate a collection of forty self-avoiding walks with one million steps.
For each walk we compute its driving function by three different methods. The first uses the
vertical slit map and the power series approximation. The second uses the tilted slit map and
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the power series approximation. The third uses the vertical slit map without the power series
approximation. To study the effect of using different numbers of points along the curve
we do these computations on subsets of the million points on the SAW. The subsets are
obtained by taking every nth point along the walk. For the vertical slit map with the power
series approximation (the fastest of the three methods) we use n = 1,2,5,10,20,50,100.
So the curves being unzipped have from 1,000,000 to 10,000 points on them. For the tilted
slit map with the power series approximation we use n = 2,5,10,20,50,100. (This method
is slower than that using vertical slits because of the need to use Newton’s method in the
computation of the tilted slit conformal map.) For the vertical slit map without the power
series approximation (by far the slowest of the three methods) we use n = 5,10,20,50,100.

Our choice of how to compare the driving functions computed by different methods for
the same curve merits some discussion. One might measure the difference between two
driving functions by computing the supremum norm or the L1 norm of their difference over
a bounded interval. We do not do this. The driving functions we are computing are approx-
imations to Brownian motion sample paths. In particular, their slopes can be quite large. If
you translate such a function by a small amount, the difference between the translated func-
tion and the original function can have a supremum norm or L1 norm that is rather large. (Of
course, the driving functions are continuous so these norms of the difference go to zero, but
not linearly with the size of the translation.) Thus a small error in computing the capacity
produces a relatively large error in these norms. Instead of using these norms, we compare
driving functions by using only the last point on the driving function. We denote this last
point by (T ,UT ). The capacity of the SAW is 2T and UT is the image of the end of the SAW
under the conformal map that uniformizes the half plane minus the SAW.

We do not know the exact driving function of the SAW, so we treat the result of our
computation using all one million steps (i.e., n = 1) with the vertical slit map and the power
series approximation as the exact answer. We then compute relative errors for T and UT .
For T we obtain the relative error by dividing the error in T by T . For UT we divide the
error by the maximum of |Ut | along the curve. For both of these relative errors we take the
average over the forty SAW’s.

We begin with the effect of the number of points we use along the curve. We study this
using the vertical slit map with the power series approximation. We let N = 106/n denote
the number of points on the SAW used in a particular computation. For the vertical slit map
with the power series approximation, N ranges from 104 to 106. In Fig. 3 we plot the relative
error in T as a function of N . This is the higher of the two sets of points. In Fig. 4 we plot
the relative error in UT as a function of N . Again, this is the higher of the two sets of points.
In both of these plots the error is computed by treating the values for N = 106 as the exact
values. These plots give an idea of the size of the error when the number of points used on
the curve is reduced.

To study the effect of the choice of conformal map (vertical slit vs. tilted slit), we compute
the difference between the values of T using the two different maps with the same value of
N . We do the same for UT . We convert these errors to relative errors by dividing by T or
the maximum of |Ut |. These relative errors are plotted as functions of N in Figs. 3 and 4. In
both figures they are the lower sets of points. The figure shows they go to zero as N → ∞.
Note that these points lie well below the points that show the difference between the vertical
map computation at the given N with the vertical map computation with N = 106. In other
words, the effect of the choice of the conformal map is smaller than the effect of using more
points along the curve.

Finally we discuss the effect of the power series approximation. We use the vertical slit
method. We compute the differences in T and UT computed with and without the power
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Fig. 3 The top set of points is the relative error in T as a function of the number of points N used on the
SAW. The bottom set of points is the relative difference between T computed using the tilted slit and vertical
slit maps

Fig. 4 The top set of points is the relative error in UT as a function of the number of points N used on
the SAW. The bottom set of points is the relative difference between UT computed using the tilted slit and
vertical slit maps
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Table 6 The effect of the power
series approximation. The table
shows the relative differences in
T and in UT when we use and do
not use the power series
approximation

N T UT

10,000 3.66e−09 9.12e−09

20,000 2.59e−09 7.98e−09

50,000 1.61e−09 4.73e−09

100,000 8.38e−10 3.15e−09

200,000 6.98e−10 1.76e−09

series approximation. We convert these differences to relative differences by dividing by T

or the maximum of |Ut |. Table 6 shows the relative differences. They are very small and
insignificant compared to the differences that we see when we change the conformal map
used or the number of points along the curve. In this study we took the number of terms in
our power series to be 12 and the parameter L = 4.0. Increasing either of these improves the
accuracy of the approximation while slowing down the computation. We used block lengths
of 100.

5 Conclusions

In this paper we computed the stochastic driving process of several models of random curves
which we know are not SLE. We considered several statistical tests of whether this driving
process is a Brownian motion. Simply checking if the distribution at a fixed time is Gaussian
was seen to be useless. We must use a test that involves the independence of the increments
of the Brownian motion. Our most effective tests were χ2 goodness of fit tests in which we
consider n equal increments of the process and take the cells to be determined simply by the
signs of the increments. This test was the most successful at concluding that for the models
that are not SLE, the stochastic driving process is not a Brownian motion. One nice feature
of this test is that it does not involve the value of κ .

In the models we studied which are not an SLE, we have broken conformal invariance in
a drastic way. In particular, these models are not locally isotropic. The models from physics
that have been recently studied as possible SLE’s should be locally isotropic. So a lack of
conformal invariance in these physical models would have to arise in a completely different
way compared to the models we studied. Our main conclusion is not that the specific tests
of Brownian motion that we found effective for our models are the best tests for all models,
but rather that when we test for SLE by computing the Loewner driving process, we should
employ a variety of tests that this process is a Brownian motion.

We have also studied the numerical problem of computing the driving function of a given
curve using the zipper algorithm. We have seen that the difference in the driving function
when we use vertical slits or tilted slits for the elementary conformal map for the algorithm
is quite small. Given that the vertical slit map is considerably faster and easier to implement,
we see no reason to use the tilted slit map. We have also shown that the speed of this algo-
rithm can be increased dramatically using power series approximations of certain analytic
functions. The loss of accuracy from this approximation is extremely small, in particular it
is insignificant compared to the effect of changing the number of points used to define the
curve we are unzipping or compared to the difference between using vertical slits or tilted
slits in the algorithm.
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Appendix: Details of the Simulations

In this appendix we give some details of the simulations of the distorted LERW, SAW and
percolation interface.

The LERW walk that we simulate is chordal LERW in the half plane from 0 to ∞. This
means that we take an ordinary random walk beginning at the origin and condition it to
remain in the upper half plane. Then we erase the loops in chronological order. The ordinary
random walk conditioned to remain in the upper half plane is easy to simulate since it is
given by a random walk beginning at 0 with transition probabilities that only depend on the
vertical component of the present location of the walk. If the site has vertical component k,
then the walk moves up with probability (k + 1)/4k, down with probability (k − 1)/4k, and
to the right or left with probability 1/4. (See, for example, section 0.1 of [9].) This process
is known as the half plane excursion. The half-plane excursion is transient, i.e., each lattice
site is visited by the excursion a finite number of times. This implies that the loop erasure
makes sense. (For a transient walk all parts of the walk would eventually be part of a loop
and so would be erased.) Note, however, that if we take an infinite half plane excursion and
only consider the first n steps and loop-erase this walk, the result does not completely agree
with the loop-erasure of the full infinite excursion. A site which is visited by the excursion
before time n may be erased by a loop formed after time n.

In practice there is no way to know if a visit to a site will be erased by some future
loop without simulating the entire excursion. So in the simulation we do the following. We
generate a half-plane excursion, erasing the loops as they are formed. We stop when the
resulting walk has N steps. If n is small compared to N , then the distribution of our walk
for the first n steps is close to the true distribution of the first n steps of the LERW. We will
only compute the driving function for the first n steps.

We take N = 50,000 and generate 100,000 samples. If we work on a unit lattice, a LERW
with N steps has a size of order Nν with ν = 4/5. So we rescale our walk by a factor of
Nν to obtain a curve whose size is of order one. We then compute its driving function up
to time T = 0.01. The time T is one half of the capacity. So the number of steps needed to
reach T = 0.01 is random. For this choice of T , the mean of this random number of steps is
approximately 8200, roughly a factor of six smaller than N .

The SAW in the upper half plane is defined as follows. Let N be a positive integer. We
consider all nearest neighbor walks with N steps in the upper half plane which begin at the
origin and do not visit any site more than once. We put the uniform probability measure
on this finite set of walks. We let N → ∞ to get a probability measure on infinite self-
avoiding walks on the unit lattice in the upper half plane. Then we take the lattice spacing
to zero. We simulate the SAW in the half plane with a fixed number of steps with the pivot
algorithm, a Markov Chain Monte Carlo method [12]. We use the fast implementation of
this algorithm introduced in [7]. For the SAW there is an issue similar to the LERW. The
pivot algorithm produces the uniform distribution on the set of walks with N steps. But this
is not the distribution of the infinite SAW in the half plane restricted to walks of length N .
As with the LERW, we address this problem by simulating walks with N steps but then
computing the driving function for only the first n steps where n is much smaller than N .



818 T. Kennedy

We simulate SAW’s with 200,000 steps. We sample the SAW from the pivot algorithm
every 100,000 time steps in the Markov chain. We run the chain for 1010 iterations to produce
100,000 samples. Unlike the other two models, these samples are not exactly independent,
but the large time interval between sampling makes the samples very close to independent.
We rescale the SAW by a factor of Nν with ν = 3/4 and then compute its driving function
up to time T = 0.002. The mean of the number of steps needed to reach T = 0.002 is ap-
proximately 9350, roughly a factor of 20 smaller than the total number of steps in the SAW.

The percolation model we study is site percolation on the triangular lattice in the up-
per half plane, but we describe it using the hexagonal lattice in the upper half plane. Each
hexagon is colored white or black with probability 1/2. The hexagons along the negative
real axis are white and those along the positive real axis are black. This forces an inter-
face which starts with the bond through the origin between the adjacent differently colored
hexagons on the real axis. This interface is the unique curve on the hexagonal lattice which
begins at this bond and has all white hexagons along one side of the interface and all black
ones along the other side.

Note that unlike the LERW or SAW there is no finite length effect for percolation in-
terfaces. If we generate interfaces with n steps, they have exactly the same distribution as
the first n steps of interfaces of length N where N > n. We generate 100,000 samples of
interfaces with N = 40,000 steps. We rescale our walk by a factor of Nν with ν = 4/7 and
then compute the driving function up to time T = 0.1. This corresponds to a mean number
of steps of approximately 11,300.

We end with a comment on the time T and our rescaling of the various curves. For each
model we have rescaled the curves by a factor of Nν . This is merely for convenience. We
could have left the curves on a unit lattice and computed the driving function up to time T

given by the above values times N2ν . What is important is that the mean number of steps
of the curves we are unzipping is large (so that we are close to the scaling limit) but still
significantly smaller than the total number of steps in the curve (for the SAW and LERW)
so that we avoid the finite length effects discussed above. We have chosen the values of T so
that in all three models the mean number of steps unzipped is on the order of 10,000. Almost
all of the time in these simulations is spent on computing the driving functions. Generating
the random curves takes essentially no time by comparison.
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